Caffe图像数据转换成可运行leveldb?lmdb文件(caffe使用案例)学会了吗

随心笔谈2年前发布 编辑
164 0
🌐 经济型:买域名、轻量云服务器、用途:游戏 网站等 《腾讯云》特点:特价机便宜 适合初学者用 点我优惠购买
🚀 拓展型:买域名、轻量云服务器、用途:游戏 网站等 《阿里云》特点:中档服务器便宜 域名备案事多 点我优惠购买
🛡️ 稳定型:买域名、轻量云服务器、用途:游戏 网站等 《西部数码》 特点:比上两家略贵但是稳定性超好事也少 点我优惠购买



目录引言该文件的使用格式调用linux命令生成图片清单FLAGS参数组最后运行脚本文件

在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。

而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?

在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp,存放在根目录下的tools文件夹下。编译之后,生成对应的可执行文件放在 buile/tools/ 下面,这个文件的作用就是用于将图片文件转换成caffe框架中能直接使用的db文件。

convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME

需要带四个参数:

FLAGS: 图片参数组,后面详细介绍ROOTFOLDER/: 图片存放的绝对路径,从linux系统根目录开始LISTFILE: 图片文件列表清单,一般为一个txt文件,一行一张图片DB_NAME: 最终生成的db文件存放目录

如果图片已经下载到本地电脑上了,那么我们首先需要创建一个图片列表清单,保存为txt

本文以caffe程序中自带的图片为例,进行讲解,图片目录是  example/images/, 两张图片,一张为cat.jpg, 另一张为fish_bike.jpg,表示两个类别。

我们创建一个sh脚本文件,调用linux命令来生成图片清单:

# sudo vi examples/images/create_filelist.sh

编辑这个文件,输入下面的代码并保存

# /usr/bin/env sh
DATA=examples/images
echo “Create train.txt…”
rm -rf $DATA/train.txt
find $DATA -name *cat.jpg | cut -d ‘/’ -f3 | sed “s/$/ 1/”>>$DATA/train.txt
find $DATA -name *bike.jpg | cut -d ‘/’ -f3 | sed “s/$/ 2/”>>$DATA/tmp.txt
cat $DATA/tmp.txt>>$DATA/train.txt
rm -rf $DATA/tmp.txt
echo “Done..”

这个脚本文件中,用到了rm,find, cut, sed,cat等linux命令。

rm: 删除文件find: 寻找文件cut: 截取路径

sed: 在每行的最后面加上标注。本例中将找到的*cat.jpg文件加入标注为1,找到的*bike.jpg文件加入标注为2

cat: 将两个类别合并在一个文件里。

最终生成如下的一个train.txt文件:

cat.jpg 1
fish-bike.jpg 2

当然,图片很少的时候,手动编写这个列表清单文件就行了。但图片很多的情况,就需要用脚本文件来自动生成了。在以后的实际应用中,还需要生成相应的val.txt和test.txt文件,方法是一样的。

生成的这个train.txt文件,就可以作为第三个参数,直接使用了。

接下来,我们来了解一下FLAGS这个参数组,有些什么内容:

-gray: 是否以灰度图的方式打开图片。程序调用opencv库中的imread()函数来打开图片,默认为false-shuffle: 是否随机打乱图片顺序。默认为false-backend:需要转换成的db文件格式,可选为leveldb或lmdb,默认为lmdb-resize_width/resize_height: 改变图片的大小。在运行中,要求所有图片的尺寸一致,因此需要改变图片大小。 程序调用opencv库的resize()函数来对图片放大缩小,默认为0,不改变-check_size: 检查所有的数据是否有相同的尺寸。默认为false,不检查-encoded: 是否将原图片编码放入最终的数据中,默认为false-encode_type: 与前一个参数对应,将图片编码为哪一个格式:‘png’,’jpg’……

好了,知道这些参数后,我们就可以调用命令来生成最终的lmdb格式数据了

由于参数比较多,因此我们可以编写一个sh脚本来执行命令:

首先,创建sh脚本文件:

# sudo vi examples/images/create_lmdb.sh

编辑,输入下面的代码并保存

#!/usr/bin/en sh
DATA=examples/images
rm -rf $DATA/img_train_lmdb
build/tools/convert_imageset –shuffle \
–resize_height=256 –resize_width=256 \
/home/xxx/caffe/examples/images/ $DATA/train.txt $DATA/img_train_lmdb

设置参数-shuffle,打乱图片顺序。设置参数-resize_height和-resize_width将所有图片尺寸都变为256*256.

/home/xxx/caffe/examples/images/ 为图片保存的绝对路径。

# sudo sh examples/images/create_lmdb.sh

就会在examples/images/ 目录下生成一个名为 img_train_lmdb的文件夹,里面的文件就是我们需要的db文件了。

以上就是Caffe图像数据转换成可运行leveldb lmdb文件的详细内容,更多关于Caffe图像数据转换db文件的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:Caffe卷积神经网络视觉层Vision?Layers及参数详解Caffe卷积神经网络数据层及参数caffe的python接口之手写数字识别mnist实例caffe的python接口生成solver文件详解学习python格式的Caffe图片数据均值计算学习Caffe数据可视化环境python接口配置教程示例Caffe卷积神经网络solver及其配置详解

© 版权声明

相关文章