MongoDB中哪几种情况下的索引选择策略(mongo建索引很慢吗)学到了吗

随心笔谈2年前发布 编辑
164 0
🌐 经济型:买域名、轻量云服务器、用途:游戏 网站等 《腾讯云》特点:特价机便宜 适合初学者用 点我优惠购买
🚀 拓展型:买域名、轻量云服务器、用途:游戏 网站等 《阿里云》特点:中档服务器便宜 域名备案事多 点我优惠购买
🛡️ 稳定型:买域名、轻量云服务器、用途:游戏 网站等 《西部数码》 特点:比上两家略贵但是稳定性超好事也少 点我优惠购买



目录一、MongoDB如何选择索引二、数据准备三、正则对index的使用四、$or从句对索引的利用五、sort对索引的利用六、搜索数据对索引命中的影响总结

如果我们在Collection建了5个index,那么当我们查询的时候,MongoDB会根据查询语句的筛选条件、sort排序等来定位可以使用的index作为候选索引;然后MongoDB会创建对应数量的查询计划,并分别使用不同线程执行查询计划,最终会选择一个执行最快的index;但是这个选择也不是一成不变的,后续还会有一段时间根据实际执行情况动态调整;

for(let i=0;i<1000000;i++){
db.users.insertOne({
“id”:i,
“name”:’user’+i,
“age”:Math.floor(Math.random()*120),
“created”:new Date(ISODate().getTime() – 1000 * 60*i)
});
}

MongoDB支持正则查询,在特定的情况其也是可以利用index获得查询性能的提升;

虽然MongDB执行正则会最大限度的使用index,但是不同的用法还是会影响对index的利用程度的;

执行以下普通正则表达式

从queryPlanner.winningPlan部分的COLLSCAN,可以看到正则表达式默认会进行全表的扫描;

从executionStats.executionStages部分可以看到COLLSCAN共扫描了1000000个文档,并返回1111个文档,总耗时794ms;

db.users.find({
name:/user999/
}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“winningPlan” : {
“stage” : “COLLSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”
}
},
“direction” : “forward”
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1111,
“executionTimeMillis” : 909,
“totalKeysExamined” : 0,
“totalDocsExamined” : 1000000,
“executionStages” : {
“stage” : “COLLSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”
}
},
“nReturned” : 1111,
“executionTimeMillisEstimate” : 794,
“works” : 1000002,
“advanced” : 1111,
“needTime” : 998890,
“needYield” : 0,
“saveState” : 7830,
“restoreState” : 7830,
“isEOF” : 1,
“invalidates” : 0,
“direction” : “forward”,
“docsExamined” : 1000000
}
}
}

创建一个包含name的index;

db.users.createIndex({name:1})

再次执行上边的查询,可以看到使用了我们新建的name_1索引;但是从执行状态来看,还是扫描了全体的索引的key,并不能很好的利用index;

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“name” : {
“$regex” : “user999”
}
},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”
}
},
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1111,
“executionTimeMillis” : 971,
“totalKeysExamined” : 1000000,
“totalDocsExamined” : 1111,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1111,
“executionTimeMillisEstimate” : 887,
“docsExamined” : 1111,
“alreadyHasObj” : 0,
“inputStage” : {
“stage” : “IXSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”
}
},
“nReturned” : 1111,
“executionTimeMillisEstimate” : 876,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“keysExamined” : 1000000
}
}
}
}

使用前缀匹配的话可以最大限度的利用index,从执行状态可以看到只检测了1111个index key;

db.users.find({
name:/^user999/
}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“name” : {
“$regex” : “^user999”
}
},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1111,
“executionTimeMillis” : 2,
“totalKeysExamined” : 1111,
“totalDocsExamined” : 1111,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1111,
“executionTimeMillisEstimate” : 0
“docsExamined” : 1111
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 1111,
“executionTimeMillisEstimate” : 0,
“indexName” : “name_1”,
“keysExamined” : 1111
}
}
}
}

即使是前缀匹配,如果忽略大小写的话也无法充分利用index了;

db.users.find({
name:/^user999/i
}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“name” : {
“$regex” : “user999”,
“$options” : “i”
}
},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”,
“$options” : “i”
}
},
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1111,
“executionTimeMillis” : 943,
“totalKeysExamined” : 1000000,
“totalDocsExamined” : 1111,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1111,
“executionTimeMillisEstimate” : 833,
“works” : 1000001,
“inputStage” : {
“stage” : “IXSCAN”,
“filter” : {
“name” : {
“$regex” : “user999”,
“$options” : “i”
}
},
“nReturned” : 1111,
“executionTimeMillisEstimate” : 833,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”
“keysExamined” : 1000000
}
}
}
}

MongoDB执行$or从句的时候,会将所有的从句作为逻辑的整体,要不就都使用index,要不就都进行全表扫描;

执行以下的查询语句;

db.users.find({
$or:[
{name:/^user666/},
{age:{$gte:80}}
]
}).explain(‘executionStats’)

在只有name_1这个index的时候,我们可以看到MongoDB进行了全表扫描,全表扫描的时候进行$or从句的过滤;

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“$or” : [
{
“age” : {
“$gte” : 20
}
},
{
“name” : {
“$regex” : “^user666”
}
}
]
},
“winningPlan” : {
“stage” : “SUBPLAN”,
“inputStage” : {
“stage” : “COLLSCAN”,
“filter” : {
“$or” : [
{
“age” : {
“$gte” : 20
}
},
{
“name” : {
“$regex” : “^user666”
}
}
]
},
“direction” : “forward”
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 833995,
“executionTimeMillis” : 576,
“totalKeysExamined” : 0,
“totalDocsExamined” : 1000000,
“executionStages” : {
“stage” : “SUBPLAN”,
“nReturned” : 833995,
“executionTimeMillisEstimate” : 447,
“inputStage” : {
“stage” : “COLLSCAN”,
“filter” : {
“$or” : [
{
“age” : {
“$gte” : 20
}
},
{
“name” : {
“$regex” : “^user666”
}
}
]
},
“nReturned” : 833995,
“executionTimeMillisEstimate” : 447,
“docsExamined” : 1000000
}
}
}
}

我们对name字段新建一个index;

db.users.createIndex({age:1})

再次执行以上的查询语句,这次可以看到每个从句都利用了index,并且每个从句会单独执行并最终进行or操作;

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“$or” : [
{
“age” : {
“$gte” : 80
}
},
{
“name” : {
“$regex” : “^user666”
}
}
]
},
“winningPlan” : {
“stage” : “SUBPLAN”,
“inputStage” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “OR”,
“inputStages” : [
{
“stage” : “IXSCAN”,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“name” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“name” : [
“[“user666”, “user667″)”,
“[/^user666/, /^user666/]”
]
}
},
{
“stage” : “IXSCAN”,
“keyPattern” : {
“age” : 1
},
“indexName” : “age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“age” : [
“[80.0, inf.0]”
]
}
}
]
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 333736,
“executionTimeMillis” : 741,
“totalKeysExamined” : 334102,
“totalDocsExamined” : 333736,
“executionStages” : {
“stage” : “SUBPLAN”,
“nReturned” : 333736,
“executionTimeMillisEstimate” : 703,
“inputStage” : {
“stage” : “FETCH”,
“nReturned” : 333736,
“executionTimeMillisEstimate” : 682
“docsExamined” : 333736,
“inputStage” : {
“stage” : “OR”,
“nReturned” : 333736,
“executionTimeMillisEstimate” : 366,
“inputStages” : [
{
“stage” : “IXSCAN”,
“nReturned” : 1111,
“executionTimeMillisEstimate” : 0,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“indexBounds” : {
“name” : [
“[“user666”, “user667″)”,
“[/^user666/, /^user666/]”
]
},
“keysExamined” : 1112
},
{
“stage” : “IXSCAN”,
“nReturned” : 332990,
“executionTimeMillisEstimate” : 212,
“keyPattern” : {
“age” : 1
},
“indexName” : “age_1”,
“indexBounds” : {
“age” : [
“[80.0, inf.0]”
]
},
“keysExamined” : 332990
}
]
}
}
}
}
}

如果sort操作无法利用index,则MongoDB就会在内存中排序数据,并且数据量一大就会报错;

db.users.find().sort({created: -1}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {

},
“winningPlan” : {
“stage” : “SORT”,
“sortPattern” : {
“created” : -1
},
“inputStage” : {
“stage” : “SORT_KEY_GENERATOR”,
“inputStage” : {
“stage” : “COLLSCAN”,
“direction” : “forward”
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : false,
“errorMessage” : “Exec error resulting in state FAILURE :: caused by :: Sort operation used more than the maximum 33554432 bytes of RAM. Add an index, or specify a smaller limit.”,
“errorCode” : 96,
“nReturned” : 0,
“executionTimeMillis” : 959,
“totalKeysExamined” : 0,
“totalDocsExamined” : 361996,
“executionStages” : {
“stage” : “SORT”,
“nReturned” : 0,
“executionTimeMillisEstimate” : 922,
“sortPattern” : {
“created” : -1
},
“memUsage” : 33554518,
“memLimit” : 33554432,
“inputStage” : {
“stage” : “SORT_KEY_GENERATOR”,
“nReturned” : 361996,
“executionTimeMillisEstimate” : 590,
“inputStage” : {
“stage” : “COLLSCAN”,
“nReturned” : 361996,
“executionTimeMillisEstimate” : 147,
“direction” : “forward”,
“docsExamined” : 361996
}
}
}
}
}

如果是单字段index,sort从两个方向都可以充分利用index;可以看到MongoDB直接按照index的顺序返回结果,直接就没有sort阶段了;

db.users.find().sort({name: -1}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {

},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“direction” : “backward”,
“indexBounds” : {
“name” : [
“[MaxKey, MinKey]”
]
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1000000,
“executionTimeMillis” : 1317,
“totalKeysExamined” : 1000000,
“totalDocsExamined” : 1000000,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 1180,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 560,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“name” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“name” : [
“[MaxKey, MinKey]”
]
},
“keysExamined” : 1000000,
“seeks” : 1,
“dupsTested” : 0,
“dupsDropped” : 0,
“seenInvalidated” : 0
}
}
}
}

对于复合索引,sort除了可以从整体上从两个方向利用index,也可以利用index的前缀索引和非前缀局部索引;

新建复合索引

db.users.createIndex({created:-1, name:1, age:1})

按照复合索引的反方向进行整体排序;

db.users.find().sort({created:1, name:-1, age:-1}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {

},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[MinKey, MaxKey]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1000000,
“executionTimeMillis” : 1518,
“totalKeysExamined” : 1000000,
“totalDocsExamined” : 1000000,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 1364,
“docsExamined” : 1000000,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 816,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[MinKey, MaxKey]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
},
“keysExamined” : 1000000
}
}
}
}

排序使用索引前缀,也需要保证字段的顺序,但是可以反方向排序;

db.users.find().sort({created:1, name:-1, age:-1}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {

},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[MinKey, MaxKey]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 1000000,
“executionTimeMillis” : 1487,
“totalKeysExamined” : 1000000,
“totalDocsExamined” : 1000000,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 1339,
“works” : 1000001,
“advanced” : 1000000,
“needTime” : 0,
“needYield” : 0,
“saveState” : 7845,
“restoreState” : 7845,
“isEOF” : 1,
“invalidates” : 0,
“docsExamined” : 1000000,
“alreadyHasObj” : 0,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 1000000,
“executionTimeMillisEstimate” : 769,
“works” : 1000001,
“advanced” : 1000000,
“needTime” : 0,
“needYield” : 0,
“saveState” : 7845,
“restoreState” : 7845,
“isEOF” : 1,
“invalidates” : 0,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[MinKey, MaxKey]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
},
“keysExamined” : 1000000,
“seeks” : 1,
“dupsTested” : 0,
“dupsDropped” : 0,
“seenInvalidated” : 0
}
}
}
}

排序如果使用的是非前缀的局部字典排序,name需要保证前边的字段是等值筛选操作才行;

db.users.find({created:new Date(“2021-10-30T08:17:01.184Z”)}).sort({name:-1}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“created” : {
“$eq” : ISODate(“2021-10-30T08:17:01.184Z”)
}
},
“winningPlan” : {
“stage” : “FETCH”,
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[new Date(1635581821184), new Date(1635581821184)]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
}
}
},
“rejectedPlans” : [ ]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 0,
“executionTimeMillis” : 0,
“totalKeysExamined” : 0,
“totalDocsExamined” : 0,
“executionStages” : {
“stage” : “FETCH”,
“nReturned” : 0,
“executionTimeMillisEstimate” : 0,
“works” : 1,
“advanced” : 0,
“needTime” : 0,
“needYield” : 0,
“saveState” : 0,
“restoreState” : 0,
“isEOF” : 1,
“invalidates” : 0,
“docsExamined” : 0,
“alreadyHasObj” : 0,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 0,
“executionTimeMillisEstimate” : 0,
“works” : 1,
“advanced” : 0,
“needTime” : 0,
“needYield” : 0,
“saveState” : 0,
“restoreState” : 0,
“isEOF” : 1,
“invalidates” : 0,
“keyPattern” : {
“created” : -1,
“name” : 1,
“age” : 1
},
“indexName” : “created_-1_name_1_age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“created” : [ ],
“name” : [ ],
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “backward”,
“indexBounds” : {
“created” : [
“[new Date(1635581821184), new Date(1635581821184)]”
],
“name” : [
“[MaxKey, MinKey]”
],
“age” : [
“[MaxKey, MinKey]”
]
},
“keysExamined” : 0,
“seeks” : 1,
“dupsTested” : 0,
“dupsDropped” : 0,
“seenInvalidated” : 0
}
}
}
}

MongoDB对index的选择是受到实际场景的数据影响比较大的,即与实际数据的分布规律有关,也跟实际筛选出来的数据有关系;所以我们对索引的优化和测试都需要考虑实际的数据场景才行;

由于name的字段值筛选出来的key太多,不能充分利用index,所以MongoDB拒绝了name_1并选择了age_1;

db.users.find({
name:/^user/,
age:{$gte:110}
}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“$and” : [
{
“age” : {
“$gte” : 110
}
},
{
“name” : {
“$regex” : “^user”
}
}
]
},
“winningPlan” : {
“stage” : “FETCH”,
“filter” : {
“name” : {
“$regex” : “^user”
}
},
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“age” : 1
},
“indexName” : “age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“age” : [
“[110.0, inf.0]”
]
}
}
},
“rejectedPlans” : [
{
“stage” : “FETCH”,
“filter” : {
“age” : {
“$gte” : 110
}
},
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“name” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“name” : [
“[“user”, “uses”)”,
“[/^user/, /^user/]”
]
}
}
}
]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 83215,
“executionTimeMillis” : 246,
“totalKeysExamined” : 83215,
“totalDocsExamined” : 83215,
“executionStages” : {
“stage” : “FETCH”,
“filter” : {
“name” : {
“$regex” : “^user”
}
},
“nReturned” : 83215,
“executionTimeMillisEstimate” : 232,
“works” : 83216,
“advanced” : 83215,
“needTime” : 0,
“needYield” : 0,
“saveState” : 658,
“restoreState” : 658,
“isEOF” : 1,
“invalidates” : 0,
“docsExamined” : 83215,
“alreadyHasObj” : 0,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 83215,
“executionTimeMillisEstimate” : 43,
“works” : 83216,
“advanced” : 83215,
“needTime” : 0,
“needYield” : 0,
“saveState” : 658,
“restoreState” : 658,
“isEOF” : 1,
“invalidates” : 0,
“keyPattern” : {
“age” : 1
},
“indexName” : “age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“age” : [
“[110.0, inf.0]”
]
},
“keysExamined” : 83215,
“seeks” : 1,
“dupsTested” : 0,
“dupsDropped” : 0,
“seenInvalidated” : 0
}
}
}
}

我们修改一下name筛选条件的值,进一步缩小命中的范围,可以看到这次MongoDB选择了name_1;

db.users.find({
name:/^user8888/,
age:{$gte:110}
}).explain(‘executionStats’)

{
“queryPlanner” : {
“plannerVersion” : 1,
“namespace” : “test.users”,
“indexFilterSet” : false,
“parsedQuery” : {
“$and” : [
{
“age” : {
“$gte” : 110
}
},
{
“name” : {
“$regex” : “^user8888”
}
}
]
},
“winningPlan” : {
“stage” : “FETCH”,
“filter” : {
“age” : {
“$gte” : 110
}
},
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“name” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“name” : [
“[“user8888”, “user8889″)”,
“[/^user8888/, /^user8888/]”
]
}
}
},
“rejectedPlans” : [
{
“stage” : “FETCH”,
“filter” : {
“name” : {
“$regex” : “^user8888”
}
},
“inputStage” : {
“stage” : “IXSCAN”,
“keyPattern” : {
“age” : 1
},
“indexName” : “age_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“age” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“age” : [
“[110.0, inf.0]”
]
}
}
}
]
},
“executionStats” : {
“executionSuccess” : true,
“nReturned” : 10,
“executionTimeMillis” : 0,
“totalKeysExamined” : 112,
“totalDocsExamined” : 111,
“executionStages” : {
“stage” : “FETCH”,
“filter” : {
“age” : {
“$gte” : 110
}
},
“nReturned” : 10,
“executionTimeMillisEstimate” : 0,
“works” : 114,
“advanced” : 10,
“needTime” : 102,
“needYield” : 0,
“saveState” : 1,
“restoreState” : 1,
“isEOF” : 1,
“invalidates” : 0,
“docsExamined” : 111,
“alreadyHasObj” : 0,
“inputStage” : {
“stage” : “IXSCAN”,
“nReturned” : 111,
“executionTimeMillisEstimate” : 0,
“works” : 113,
“advanced” : 111,
“needTime” : 1,
“needYield” : 0,
“saveState” : 1,
“restoreState” : 1,
“isEOF” : 1,
“invalidates” : 0,
“keyPattern” : {
“name” : 1
},
“indexName” : “name_1”,
“isMultiKey” : false,
“multiKeyPaths” : {
“name” : [ ]
},
“isUnique” : false,
“isSparse” : false,
“isPartial” : false,
“indexVersion” : 2,
“direction” : “forward”,
“indexBounds” : {
“name” : [
“[“user8888”, “user8889″)”,
“[/^user8888/, /^user8888/]”
]
},
“keysExamined” : 112,
“seeks” : 2,
“dupsTested” : 0,
“dupsDropped” : 0,
“seenInvalidated” : 0
}
}
}
}

到此这篇关于MongoDB中哪几种情况下的索引选择策略的文章就介绍到这了,更多相关MongoDB索引选择策略内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:mongoDB数据库索引快速入门指南关于对MongoDB索引的一些简单理解MongoDB如何正确中断正在创建的索引详解ubuntu安装mongodb创建账号和库及添加坐标索引的流程分析MongoDB通配符索引的用法实例关于MongoDB谨防索引seek的效率问题详析MongoDB中的定时索引示例详解MongoDB索引类型汇总分享

© 版权声明

相关文章