PostgreSQL数据库中如何保证LIKE语句的效率(推荐)

随心笔谈2年前发布 编辑
185 0
🌐 经济型:买域名、轻量云服务器、用途:游戏 网站等 《腾讯云》特点:特价机便宜 适合初学者用 点我优惠购买
🚀 拓展型:买域名、轻量云服务器、用途:游戏 网站等 《阿里云》特点:中档服务器便宜 域名备案事多 点我优惠购买
🛡️ 稳定型:买域名、轻量云服务器、用途:游戏 网站等 《西部数码》 特点:比上两家略贵但是稳定性超好事也少 点我优惠购买



在任何数据库中使用LIKE语句往往都是令人头疼的一件事,因为不少用户发现LIKE语句效率极低,查看执行计划后发现原来没有走索引,那么在Postgresql数据中LIKE语句的执行效率又是怎样的呢?我们又该如何提高LIKE语句的执行效率呢?

数据库环境: PostgreSQL 12.3  X86_64  

创建虚拟环境:

postgres=# create database testdb01 owner highgo;
CREATE DATABASE
postgres=# \c testdb01 highgo

testdb01=# create table testliketb01 (userid int primary key,username varchar(20),password varchar(60),description text);
CREATE TABLE

为何保证测试效果更直观,我们使用随机数据填充一下该表

testdb01=# insert into testliketb01 select generate_series(1,500000),split_part(‘张三,李四,王五,小明,小红’,’,’,(random()*(5-1)+1)::int),md5((random()*(5-1)+1)::varchar),split_part(‘highgo,highgo02,highgo03′,’,’,(random()*(3-1)+1)::int);

  至此,虚拟数据创建完毕。

testdb01=# select * from testliketb01 limit 10;
userid | username |             password             | description
——–+———-+———————————-+————-
      1 | 王五     | 4f2bca371b42abd1403d5c20c4542dff | highgo
      2 | 李四     | 2a978c605188770c5ed162889fff189e | highgo02
      3 | 李四     | f5d129ab728b72ac6f663fe544bc7c16 | highgo
      4 | 小明     | 53134fa1022c58e65168b6aa1fbe5e39 | highgo02
      5 | 王五     | 2cf9abb2a8b676a626fa2c317d401ed8 | highgo02
      6 | 王五     | 2247a0cfda1f2819554d6e8e454622eb | highgo02
      7 | 张三     | 59dfdc680c17533dfba1c72c9ce0bf76 | highgo02
      8 | 王五     | 87db4258236a3826259dcc3e7cb5fc63 | highgo02
      9 | 王五     | baaf7a2f7027df9aaeb665121432b6e2 | highgo02
     10 | 王五     | 2f8fb36b3227c795b111b9bd5b031a76 | highgo02
(10 rows)
此时数据库的状态:
testdb01=# \l+ testdb01
                                                List of databases
   Name   | Owner  | Encoding |   Collate   |    Ctype    | Access privileges | Size  | Tablespace | Description
———-+——–+———-+————-+————-+——————-+——-+————+————-
testdb01 | highgo | UTF8     | en_US.UTF-8 | en_US.UTF-8 |                   | 59 MB | pg_default |
(1 row)

  简单LIKE语句查询:

testdb01=# explain analyze select * from testliketb01 where username like ‘王%’;
                                                      QUERY PLAN                                                       
———————————————————————————————————————–
Seq Scan on testliketb01  (cost=0.00..11405.00 rows=125350 width=52) (actual time=0.014..177.571 rows=124952 loops=1)
   Filter: ((username)::text ~~ ‘王%’::text)
   Rows Removed by Filter: 375048
Planning Time: 0.121 ms
Execution Time: 190.554 ms
(5 rows)

结论:LIKE查询没有走索引   创建普通索引: testdb01=# create index idx_testliketb01_username on testliketb01(username); CREATE INDEX 执行三遍:analyze testliketb01 ; 重新执行LIKE语句,发现还是没有走索引     创建包含operator class的索引: testdb01=# create index idx_testliketb01_username on testliketb01(username varchar_pattern_ops); CREATE INDEX 执行三遍:analyze testliketb01 ;    

testdb01=# explain analyze select * from testliketb01 where username like ‘王%’;
                                                                   QUERY PLAN                                                                    
————————————————————————————————————————————————-
Bitmap Heap Scan on testliketb01  (cost=2665.26..9387.14 rows=125350 width=52) (actual time=31.383..94.745 rows=124952 loops=1)
   Filter: ((username)::text ~~ ‘王%’::text)
   Heap Blocks: exact=5155
   ->  Bitmap Index Scan on idx_testliketb01_username  (cost=0.00..2633.92 rows=125350 width=0) (actual time=29.730..29.730 rows=124952 loops=1)
         Index Cond: (((username)::text ~>=~ ‘王’::text) AND ((username)::text ~<~ ‘玌’::text))
Planning Time: 0.111 ms
Execution Time: 107.030 ms
(7 rows)

结论:在创建完普通索引并收集统计信息后数据库在执行LIKE语句时有可能仍然无法使用索引。在创建完带有操作类的索引收集完统计信息后,执行LIKE语句可以看到正常使用索引,且执行效率有了不小提升。  

PS:operator class是Postgresql新版中创建索引的新选项,旨在通过制定索引的操作类可以更精准的收集统计信息。 

  为了更精准的收集统计信息,我们也可以在初始化或者创建数据库时将Collate设置为”C”,这也是Postgresql数据中常用的优化手段。   我们来测试一下将Collate设置为”C”的效果:

testdb01=# create database testdb02 with TEMPLATE template0  LC_COLLATE=’C’  LC_CTYPE=’C’ owner highgo;
CREATE DATABASE

testdb02=# \l+ testdb02
                                           List of databases
   Name   | Owner  | Encoding | Collate | Ctype | Access privileges | Size  | Tablespace | Description
———-+——–+———-+———+——-+——————-+——-+————+————-
testdb02 | highgo | UTF8     | C       | C     |                   | 59 MB | pg_default |
(1 row)

testdb02=# create index idx_testliketb01_username on testliketb01(username);
CREATE INDEX
testdb02=# analyze testliketb01 ;
ANALYZE
testdb02=# analyze testliketb01 ;
ANALYZE
testdb02=# analyze testliketb01 ;
ANALYZE
testdb02=#  explain analyze select * from testliketb01 where username like ‘王%’;
                                                                   QUERY PLAN                                                                    
————————————————————————————————————————————————-
Bitmap Heap Scan on testliketb01  (cost=2680.26..9410.67 rows=126033 width=52) (actual time=35.262..99.052 rows=124992 loops=1)
   Filter: ((username)::text ~~ ‘王%’::text)
   Heap Blocks: exact=5155
   ->  Bitmap Index Scan on idx_testliketb01_username  (cost=0.00..2648.75 rows=126033 width=0) (actual time=33.920..33.920 rows=124992 loops=1)
         Index Cond: (((username)::text >=’王’::text) AND ((username)::text < ‘玌’::text))
Planning Time: 0.276 ms
Execution Time: 111.578 ms
(7 rows)

结论:创建数据库时将Collate设置为”C”,即便索引为普通索引,LIKE语句也可以使用索引提升查询效率。    

1、初始化数据库或者创建数据库时将Collate设置为”C”。

2、创建索引时指定索引的操作类。(text_pattern_ops、varchar_pattern_ops和 bpchar_pattern_ops分别支持类型text、varchar和 char上的B-tree索引)

3、优化思路,对于%X的列无法使用索引,可以新增一列 反存储列,将%X改为X%。

4、创建覆盖索引,保证复杂SQL中可以尽可能调用该索引。

5、调整业务逻辑,尽量不用LIKE语句或者调整LIKE语句在WHERE中的位置。

到此这篇关于PostgreSQL数据库中如何保证LIKE语句的效率的文章就介绍到这了,更多相关PostgreSQL保证LIKE语句的效率内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:postgresql 中的 like 查询优化方案PostgreSQL regexp_matches替换like模糊查询的操作postgresql关于like%xxx%的优化操作PostgreSQL LIKE 大小写实例Postgresql中LIKE和ILIKE操作符的用法详解

© 版权声明

相关文章