在 Pandas 中, 是一种用于基于整数位置进行索引的属性,可以用于获取 DataFrame 或 Series 中的数据。 支持多种索引方式,包括以下常用方式:
使用整数索引获取 DataFrame 或 Series 中的单个元素。
例如 表示获取 DataFrame 中第一行第二列的数据。
使用整数索引获取 DataFrame 或 Series 中的多个元素。
例如 表示获取 DataFrame 中第一行到第三行、第二列到第四列的数据。
使用整数列表索引获取 DataFrame 或 Series 中的多个元素。
例如 表示获取 DataFrame 中第一行、第三行、第五行和第二列、第四列、第六列的数据。
使用布尔值索引获取 DataFrame 或 Series 中的多个元素。
例如 表示获取 DataFrame 中 列大于 0 的行的第二列、第四列、第六列的数据。
注意: 属性基于整数(数字索引)位置进行索引,如果需要基于标签(标签列名)进行索引,应该使用 属性。
loc和iloc都是pandas工具中定位某一行的函数,loc是location的意思,而iloc中的 i 指的是Integer,二者的区别如下:
loc:通过行标签名称索引行数据iloc:通过行号索引行数据 示例数据
import pandas as pd
data=DataFrame(np.arange(16).reshape(4,4),index=list(“ABCD”),columns=list(“wxyz”))
print(data)
输出如下:
w x y z
A 0 1 2 3
B 4 5 6 7
C 8 9 10 11
D 12 13 14 15
#w 0
#x 1
#y 2
#z 3
print(data.loc[[“A”]])
# w x y z
#A 0 1 2 3
# []返回Series,[[]]返回DataFrame
#w 0
#x 1
#y 2
#z 3
print(data.loc[[“A”]])
# w x y z
#A 0 1 2 3
# []返回Series,[[]]返回DataFrame
到此这篇关于python中pandas库的iloc函数用法的文章就介绍到这了,更多相关python pandas库iloc函数用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!