Redisson如何解决redis分布式锁过期时间到了业务没执行完问题(redisson分布式锁超时)速看

随心笔谈2年前发布 编辑
162 0
🌐 经济型:买域名、轻量云服务器、用途:游戏 网站等 《腾讯云》特点:特价机便宜 适合初学者用 点我优惠购买
🚀 拓展型:买域名、轻量云服务器、用途:游戏 网站等 《阿里云》特点:中档服务器便宜 域名备案事多 点我优惠购买
🛡️ 稳定型:买域名、轻量云服务器、用途:游戏 网站等 《西部数码》 特点:比上两家略贵但是稳定性超好事也少 点我优惠购买



目录面试问题问题分析如何回答一、写在前面二、Redisson实现Redis分布式锁的底层原理(1)加锁机制(2)锁互斥机制(3)watch dog自动延期机制(4)可重入加锁机制(5)释放锁机制(6)上述Redis分布式锁的缺点总结

Redis锁的过期时间小于业务的执行时间该如何续期?

首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题.我们来看

很多同学在用分布式锁时,都是直接百度搜索找一个Redis分布式锁工具类就直接用了,其实Redis分布式锁比较正确的姿势是采用这个客户端工具

img

默认情况下,加锁的时间是30秒.如果加锁的业务没有执行完,那么到 30-10=20秒的时候,就会进行一次续期,把锁重置成30秒.那这个时候可能又有同学问了,那业务的机器万一宕机了呢?宕机了定时任务跑不了,就续不了期,那自然30秒之后锁就解开了呗.

现在面试,一般都会聊聊分布式系统这块的东西。通常面试官都会从服务框架(Spring Cloud、Dubbo)聊起,一路聊到分布式事务、分布式锁、ZooKeeper等知识。

所以咱们这篇文章就来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理。

说实话,如果在公司里落地生产环境用分布式锁的时候,一定是会用开源类库的,比如Redis分布式锁,一般就是用Redisson框架就好了,非常的简便易用。

大家如果有兴趣,可以去看看Redisson的官网,看看如何在项目中引入Redisson的依赖,然后基于Redis实现分布式锁的加锁与释放锁。

下面给大家看一段简单的使用代码片段,先直观的感受一下:

img

怎么样,上面那段代码,是不是感觉简单的不行!

此外,人家还支持redis单实例、redis哨兵、redis cluster、redis master-slave等各种部署架构,都可以给你完美实现。

好的,接下来就通过一张手绘图,给大家说说Redisson这个开源框架对Redis分布式锁的实现原理。

img

咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。

这里注意,仅仅只是选择一台机器!这点很关键!

紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:

img

为啥要用lua脚本呢?

因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性

那么,这段lua脚本是什么意思呢?

KEYS[1] 代表的是你加锁的那个key,比如说:

这里你自己设置了加锁的那个锁key就是“myLock”。

ARGV[1] 代表的就是锁key的默认生存时间,默认30秒。

ARGV[2] 代表的是加锁的客户端的ID,类似于下面这样:

给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

如何加锁呢?很简单,用下面的命令:

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

img

上述就代表这个客户端对“myLock”这个锁key完成了加锁。

接着会执行命令,设置myLock这个锁key的生存时间是30秒。

好了,到此为止,ok,加锁完成了。

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

很简单,第一个if判断会执行,发现myLock这个锁key已经存在了。

接着第二个if判断,判断一下,myLock锁key的hash数据结构中**,是否包含客户端2的ID**,但是明显不是的,因为那里包含的是客户端1的ID。

所以,客户端2会获取到返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。 比如还剩15000毫秒的生存时间。

此时客户端2会进入一个while循环,不停的尝试加锁。

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

比如下面这种代码:

img

这时我们来分析一下上面那段lua脚本。

第一个if判断肯定不成立,会显示锁key已经存在了。

第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是

此时就会执行可重入加锁的逻辑,他会用:

通过这个命令,对客户端1的加锁次数,累加1。

此时myLock数据结构变为下面这样:

img

大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

命令,从redis里删除这个key。

然后呢,另外的客户端2就可以尝试完成加锁了。

这就是所谓的分布式锁的开源Redisson框架的实现机制。

一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。

其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。

但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。

接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。

此时就会导致多个客户端对一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生

所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:Redisson 加锁解锁的实现Redis中Redisson红锁(Redlock)使用原理Spring?Boot?集成Redisson实现分布式锁详细案例Redisson如何解决Redis分布式锁提前释放问题Redisson分布式锁之加解锁详解

© 版权声明

相关文章